Collaboration Challenges in Building
ML-Enabled Systems:

Communication, Documentation, Engineering, and Process
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Machine Learning (ML) Component

( () face_detection.ipynb

File Edit View Insert Runtime Tools Help Cannotsave changes

+ Code + Text # Copy to Drive

[6] print("[INFO] loading model...")
Q prototxt = 'deploy.protoi 5
model = 'res10_300x300_s:

<> net = cv2.dnn.readNetFror
{

[INFO] loading model... j
Use the dnn.blobFromimage funct

[7] # resize it to have a ma:
image = imutils.resize(ir
blob = cv2.dnn.blobFromIt

Pass the blob through the neural n

[8] print("[INFO] computing ¢
net.setInput(blob)
detections = net.forward:

[INFO] computing object d

Loop over the detections and draw boxes around the detected faces




ML-Enabled System
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Multiple Teams Collaborating Together
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Research Question

“What are the collaboration points and corresponding
challenges between data scientists and software
engineers in building ML-enabled systems?”



Why do 879% of data science

projects never make it into
production? Collaboration Problems

And the third issue, intimately connected to those silos, is the lack of collaboration. Data scientists have been

VB Staff

around since the 1950s — and they were individuals sitting in a basement working behind a terminal. But now
July LEAVAVR R that it's a team sport, and the importance of that work is now being embedded into the fabric of the company,
it’s essential that every person on the team is able to collaborate with everyone else: the data engineers, the data

stewards, people that understand the data science, or analytics, or BI specialists, all the way up to DevOps and

engineering.

“This is a big place that holds companies back because they’re not used to collaborating in this way,” Leff says.
“Because when they take those insights, and they flip them over the wall, now you’re asking an engineer to

rewrite a data science model created by a data scientist, how’s that work out, usually?”

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/ °




WHY DO MACHINE
LEARNING PROJECTS FAIL?

Think ahead to production so that you don't let your
machine learning project collapse before it even
gets started. 4. YOUR MODEL MIGHT NOT EVEN GO

TO PRODUCTION
g

Agarwal is a senior data scientist currently working with Waln§

Rahul Agarwal Let’s imagine that you've created this impressive

| Expert Columnist | machine learning model. It gives 90 percent accuracy,

but it takes around 10 seconds to fetch a prediction. Or

maybe it takes a lot of resoug

https://builtin.com/machine-learning/why-do-machine-learning-projects-fail 7



Top 10 Reasons Why 87% of Machine
Learning Projects Fail

In this article, find out why 87% of machine learning projects fail.

o

A Disconnect Between Data Science and Traditional
Software Development

A disconnect between Data Science and traditional Software development is another major factor.

Traditional software development tends to be more predictable and measurable.

However, Data science is still part-research and part-engineering.

Different Ways of Working

https://dzone.com/articles/top-10-reasons-why-87-of-the-machine-learning-proj



yFrustrations shared in Twitter...

Machine Learning lives in an uncanny valley btw

All ML projects which turned into a disaster in my X ; ;
Science and Engineering.

career have a single common point:

| didn't understand the business context first, got It's the worst of both worlds.

over-excited about the tech, and jumped into coding

too early. We don't care about understanding, just making things
"work" (bad science).

1:08 PM - Mar 12, 2022 - Twitter Web App

We don't care if things work in the real world, just on

297 Retweets 39 Quote Tweets 1,786 Likes . . .
contrived benchmarks (bad engineering).

6:45 AM - Jan 29, 2022 - Twitter Web App

202 Retweets 37 Quote Tweets 1,451 Likes




Research Question

“What are the collaboration points and corresponding
challenges between data scientists and software
engineers in building ML-enabled systems?”
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Conducted
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28 organizations
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Qualitative Research

Scoping & Defining Semi-structured
Coding Scheme Interviews

Step 1: Scoping and interview guide

Step 2: Interviews

Step 3: Triangulation with literature

Literature
Step 4: Validity check with interviewees Triangulation
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Example Visual Analysis
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Collaboration Points Themes
Requirements and Planning
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Collaboration Point:

Product and Model Requirements

o

Client

Management

Product Team Model Team

a0 B | | e e

Different patterns around different organizations.

Let’s talk about two example orgs.
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Org. A: Fraud Detection in Banking Software
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Problem: Lack of ML Literacy Leads to

Unrealistic Requirements
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Problem: Need Data Scientists to Set Correct ~ “®*
Expectations
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Communication: Lack of ML literacy leads to unrealistic
requirements

Involving data scientists early when soliciting product
requirements

A Documentation: Product requirements are often not
translated into clear model requirements

Adopt more formal requirements documentation for
product and model

N\ PPOTON
.’r&’, Communication Documentation a’& Engineering Process
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Org. B: Develop OCR for Local Language

Decide on

g model req.

Client

Management

Build a product
around

Product Team

a0 B

Model-first
Trajectory

Model Team
o~ Ol
-I_ -I_

Data Team

-

Interact for
training data

20



Problem: Model Team Needs to Educate
Client on ML (Less Impact)
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Problem: Less Focus on Entire Product

Decide on

g model req.

Client

Management

Model Team
o~ Ol
-I_ -I_

Build a product
around

Interact for
training data

M¢¢

Product Team

a0 B

Data Team

-

22




Communication: Model team needs to educate client on ML

ML literacy for customers and product teams: conducting
training sessions

(o0 Process: Pursuing a model-first trajectory entirely without
r -I considering product requirements is problematic

Emphasis on collaboration during requirements phase,
more research on process needed

. . A . PROTO™
.‘r&" Communication Documentation QaEngineering Process 3




Collaboration Points Themes
Requirements and Planning
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Collaboration Point: Training Data
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Again different patterns around different organizations.
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Three Collaboration Patterns Around Training Data

Provided Data
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Org. A: Fraud Detection in Banking Software
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Problem: Data Access Challenges Due to Power &

Dynamics
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Problem: Little Help with Data Understanding
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Communication: Data Access Challenges Due to Power Dynamics
Documentation: Absence of Data Documentation

Process: Little Help with Data Understanding

Engineering: No Infrastructure to Handle Change in Data

When planning the entire product, it seems important to
pay special attention to this collaboration point.

A
.‘r&" Communication Documentation QaEngineering Process 5
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Collaboration Points Themes
Requirements and Planning
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Sgn® Communication Documentation -a-Q Engineering

O

Define processes, responsibilities, and boundaries more
carefully

0

o

Document APIs at collaboration points between teams

@ - - -
Recruit engineering support for model deployment,
monitoring, data validation, etc.

5
Establish a team culture with mutual understanding and
exchange

admtm
Process
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Summary

Why do 87% of data science
projects never make it into

production? Collaboration Problems

And the third issue, intimately connected to those silos, is the lack of collaboration. Data scientists have been

VB Staff

e
around since the 1950s — and they were individuals sitting in a basement working behind a terminal. But now

July 19, 2019 4 [IISTREEre sport, and the importance of that work is now being embedded into the fabric of the company,
it’s essential that every person on the team is able to collaborate with everyone else: the data engineers, the data
stewards, people that understand the data science, or analytics, or BI specialists, all the way up to DevOps and

engineering.

“This is a big place that holds companies back because they’re not used to collaborating in this way,” Leff says.
“Because when they take those insights, and they flip them over the wall, now you’re asking an engineer to
rewrite a data science model created by a data scientist, how’s that work out, usually?”
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