Collaboration Challenges in Building ML-Enabled Systems:

Communication, Documentation, Engineering, and Process

Nadia Nahar*

Shurui Zhou

Grace Lewis

Christian Kästner

Machine Learning (ML) Component

ML-Enabled System

User Interface

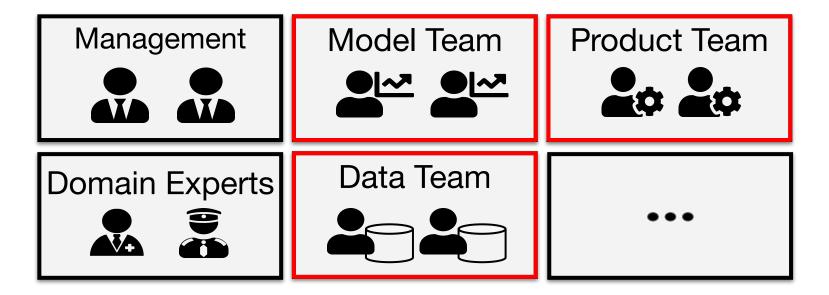
• • •

Photo Upload

Manage/ Crop Photo Detect Face Photo Tagging

Storage

Multiple Teams Collaborating Together



Research Question

"What are the collaboration points and corresponding challenges between data scientists and software engineers in building ML-enabled systems?"

Why do 87% of data science projects never make it into production?

Collaboration Problems

VB Staff

And the third issue, intimately connected to those silos, is the lack of collaboration. Data scientists have been around since the 1950s — and they were individuals sitting in a basement working behind a terminal. But now July 19, 2019 4: that it's a team sport, and the importance of that work is now being embedded into the fabric of the company, it's essential that every person on the team is able to collaborate with everyone else: the data engineers, the data stewards, people that understand the data science, or analytics, or BI specialists, all the way up to DevOps and engineering.

> "This is a big place that holds companies back because they're not used to collaborating in this way," Leff says. "Because when they take those insights, and they flip them over the wall, now you're asking an engineer to rewrite a data science model created by a data scientist, how's that work out, usually?"

WHY DO MACHINE LEARNING PROJECTS FAIL?

Think ahead to production so that you don't let your machine learning project collapse before it even

gets started.

Rahul Agarwal

Expert Columnist

Agarwal is a senior data scientist currently working with Waln

4. YOUR MODEL MIGHT NOT EVEN GO TO PRODUCTION

Let's imagine that you've created this impressive machine learning model. It gives 90 percent accuracy, but it takes around 10 seconds to fetch a prediction. Or maybe it takes a lot of resour to predict.

Is that ac Mismatch in Assumptions most likely no.

Top 10 Reasons Why 87% of Machine Learning Projects Fail

In this article, find out why 87% of machine learning projects fail.

by Prajeen MV · Oct. 13, 20 · Al Zone · Opinion

A Disconnect Between Data Science and Traditional Software Development

A disconnect between Data Science and traditional Software development is another major factor. Traditional software development tends to be more predictable and measurable.

However, Data science is still part-research and part-engineering.

Different Ways of Working

Frustrations shared in Twitter...

All ML projects which turned into a disaster in my career have a single common point:

I didn't understand the business context first, got over-excited about the tech, and jumped into coding too early.

1:08 PM · Mar 12, 2022 · Twitter Web App

297 Retweets 39 Quote Tweets 1,786 Likes

Machine Learning lives in an uncanny valley btw Science and Engineering.

It's the worst of both worlds.

We don't care about understanding, just making things "work" (bad science).

We don't care if things work in the real world, just on contrived benchmarks (bad engineering).

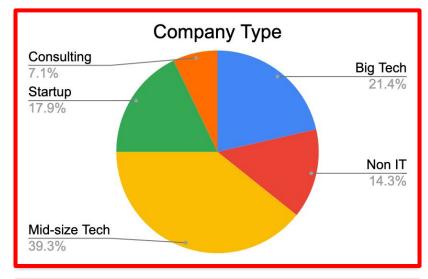
6:45 AM · Jan 29, 2022 · Twitter Web App

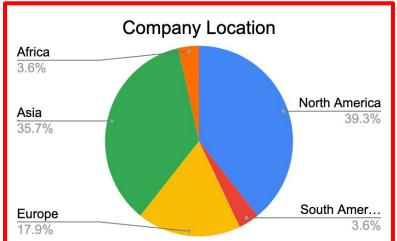
202 Retweets 37 Quote Tweets 1,451 Likes

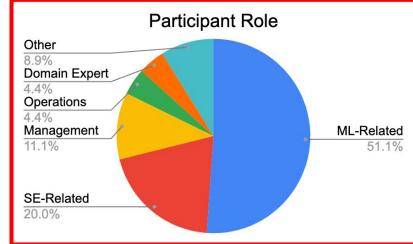
Research Question

"What are the collaboration points and corresponding challenges between data scientists and software engineers in building ML-enabled systems?"

Conducted 45 interviews in 28 organizations







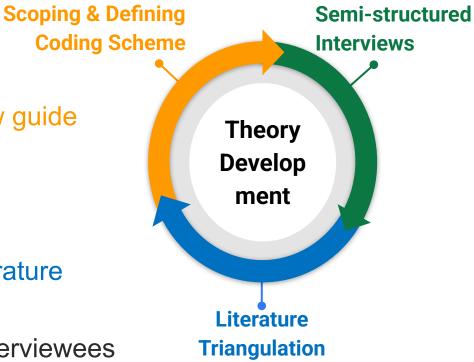
Qualitative Research

Step 1: Scoping and interview guide

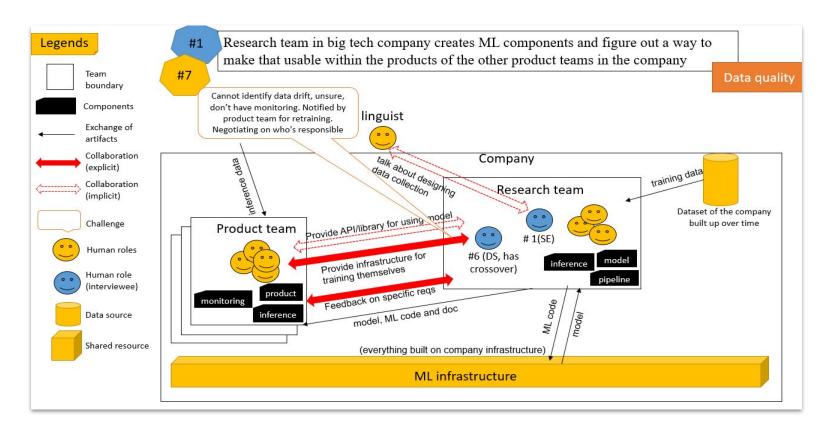
Step 2: Interviews

Step 3: Triangulation with literature

Step 4: Validity check with interviewees



Example Visual Analysis



Collaboration Points

Themes

Requirements and Planning

Product and Model Requirements

Project Planning

Training Data

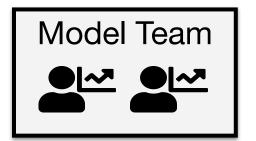
Negotiating Data Quality and Quantity

Product-Model Integration

Responsibility and Cultural Clashes

Quality Assurance for Model and Product

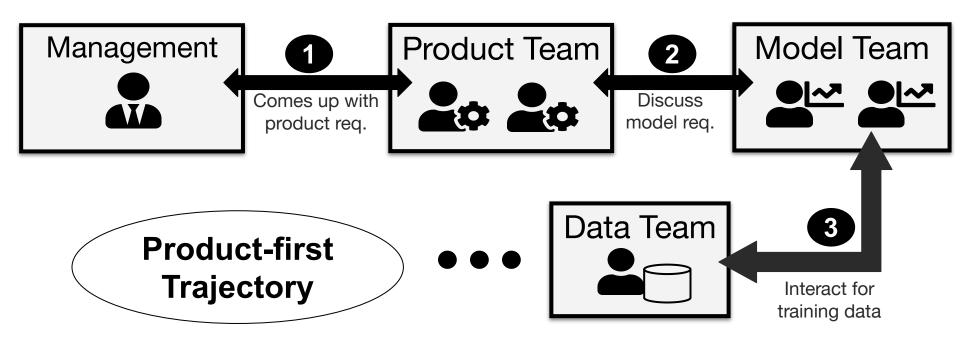
Collaboration Point: Product and Model Requirements



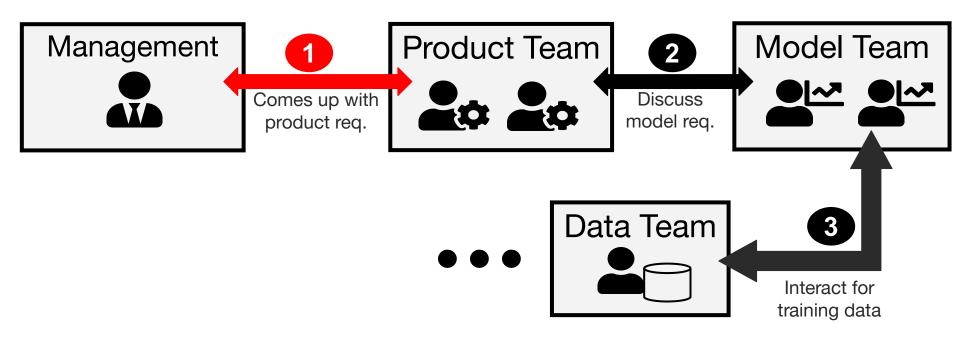
Different patterns around different organizations.

Let's talk about **two example** orgs.

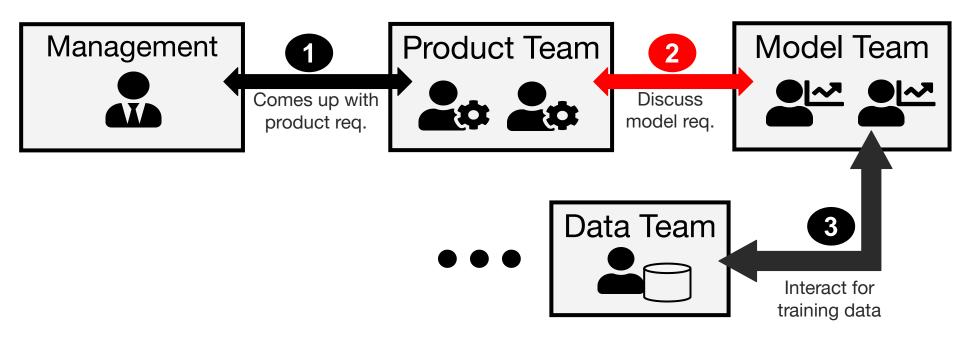
Org. A: Fraud Detection in Banking Software



Problem: Lack of ML Literacy Leads to Unrealistic Requirements



Problem: Need Data Scientists to Set Correct Expectations

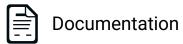


Communication: Lack of ML literacy leads to unrealistic requirements

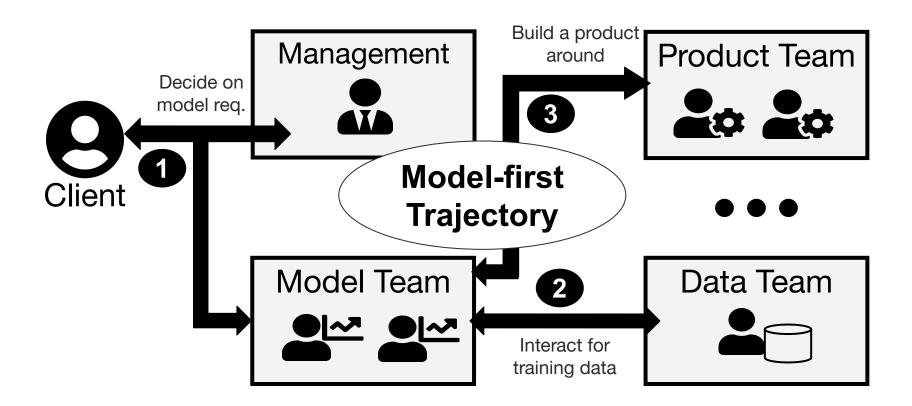
Involving data scientists early when soliciting product requirements

Documentation: Product requirements are often not translated into clear model requirements

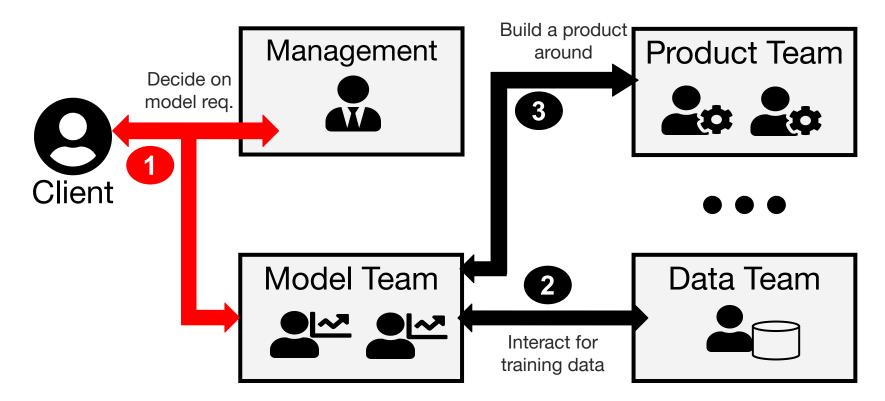
Adopt more formal requirements documentation for product and model



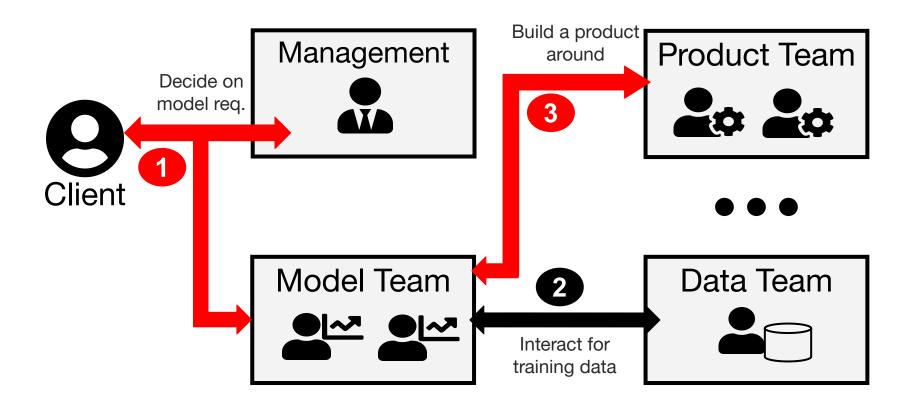
Org. B: Develop OCR for Local Language



Problem: Model Team Needs to Educate Client on ML (Less Impact)



Problem: Less Focus on Entire Product

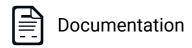


Communication: Model team needs to educate client on ML

ML literacy for customers and product teams: conducting training sessions

Process: Pursuing a model-first trajectory entirely without considering product requirements is problematic

Emphasis on collaboration during requirements phase, more research on process needed



Collaboration Points

Themes

Requirements and Planning

Product and Model Requirements

Project Planning

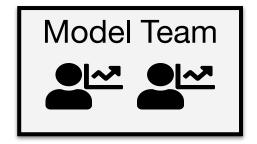
Training Data

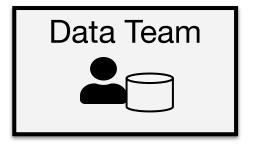
Negotiating Data Quality and Quantity

Responsibility and Cultural Clashes

Quality Assurance for Model and Product

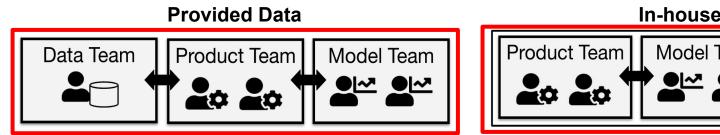
Collaboration Point: Training Data

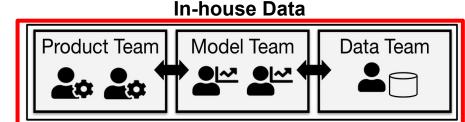


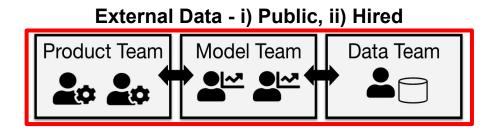


Again different patterns around different organizations.

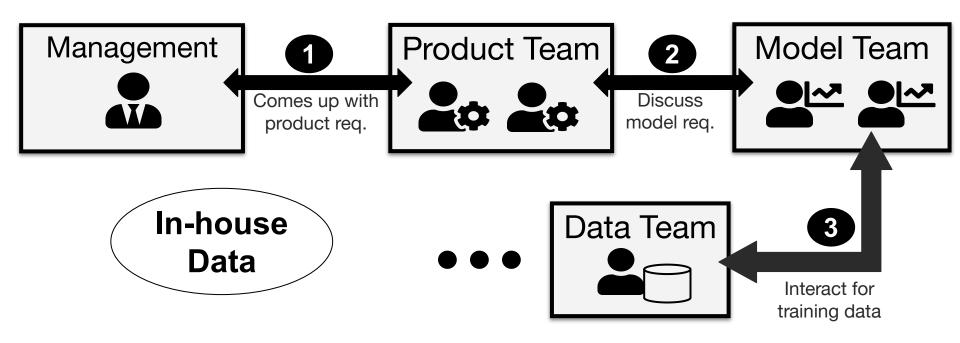
Three Collaboration Patterns Around Training Data



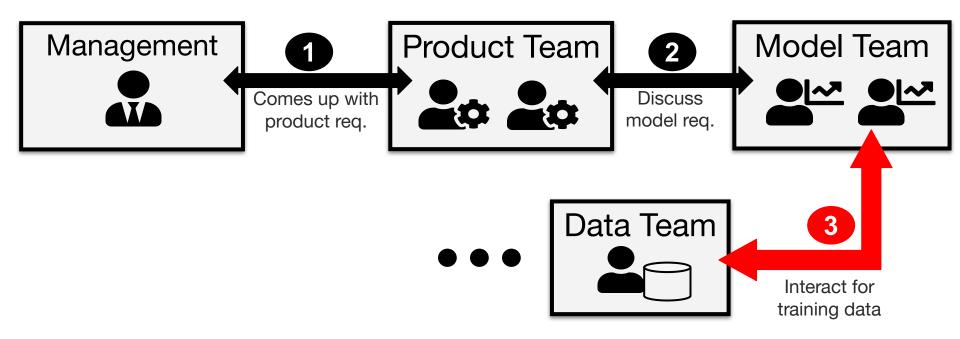




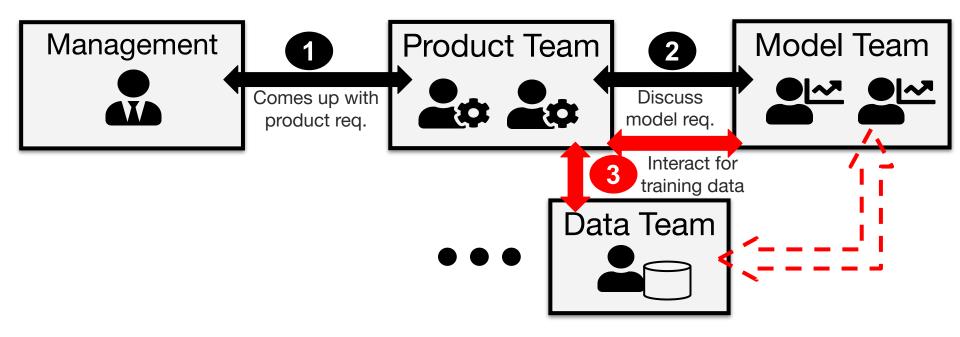
Org. A: Fraud Detection in Banking Software



Problem: Data Access Challenges Due to Power Dynamics



Problem: Little Help with Data Understanding



Communication: Data Access Challenges Due to Power Dynamics

Documentation: Absence of Data Documentation

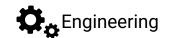
Process: Little Help with Data Understanding

Engineering: No Infrastructure to Handle Change in Data

When planning the entire product, it seems important to pay special attention to this collaboration point.







Collaboration Points

Themes

Requirements and Planning

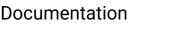
- Product and Model Requirements
- Project Planning

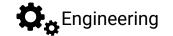
Training Data

- Negotiating Data Quality and Quantity

Product-Model Integration

- Responsibility and Cultural Clashes
- Quality Assurance for Model and Product





Define processes, responsibilities, and boundaries more carefully

Document APIs at collaboration points between teams

Recruit engineering support for model deployment, monitoring, data validation, etc.

Establish a team culture with mutual understanding and exchange

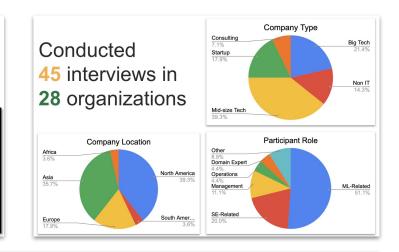
Summary

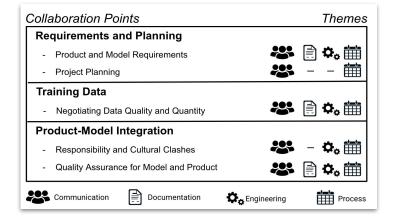
Why do 87% of data science projects never make it into Collaboration Problems production?

VB Staff

And the third issue, intimately connected to those silos, is the lack of collaboration. Data scientists have been around since the 1950s — and they were individuals sitting in a basement working behind a terminal. But now July 19, 2019 4: that it's a team sport, and the importance of that work is now being embedded into the fabric of the company, it's essential that every person on the team is able to collaborate with everyone else: the data engineers, the data stewards, people that understand the data science, or analytics, or BI specialists, all the way up to DevOps and engineering.

> "This is a big place that holds companies back because they're not used to collaborating in this way," Leff says. "Because when they take those insights, and they flip them over the wall, now you're asking an engineer to rewrite a data science model created by a data scientist, how's that work out, usually?"





Communication: Lack of ML literacy leads to unrealistic requirements

Involving data scientists early when soliciting product requirements

Documentation: Product requirements are often not translated into clear model requirements

Adopt more formal requirements documentation for product and model